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Abstract— Existing architectures for imitation learning using
image-to-action policy networks perform poorly when presented
with an input image containing multiple instances of the object
of interest, especially when the number of expert demonstra-
tions available for training are limited. We show that end-
to-end policy networks can be trained in a sample efficient
manner by (a) appending the feature map output of the vision
layers with an embedding that can indicate instance preference
or take advantage of an implicit preference present in the
expert demonstrations, and (b) employing an autoregressive
action generator network for the control layers. The proposed
architecture for localization has improved accuracy and sample
efficiency and can generalize to the presence of more instances
of objects than seen during training. When used for end-to-end
imitation learning to perform reach, push, and pick-and-place
tasks on a real robot, training is achieved with as few as 15
expert demonstrations.

I. INTRODUCTION

There has been a lot of interest in recent times towards
teaching robots to develop visuomotor skills [1], [2], [3], [4],
[5]. This paper attempts to address the challenge of using
imitation learning to enable robots to perform manipulation
tasks in the presence of multiple instances of an object in
the scene. This is useful in automating applications such
as garbage segregation or sorting operations performed in
warehouses.

The underlying principle in imitation learning is to record
observations seen and the actions taken by an expert when
performing the task and to then train a policy network to
clone the behavior of the expert. Imitation learning has been
successfully applied to diverse problems ranging from self-
driving cars [6] and drone navigation [7] to manipulation
tasks with a robotic arm [5], [4], [8], [9], [10].

Imitation learning requires high-quality expert demonstra-
tions. While for some tasks such as navigation, it may
be possible to instrument the car and record data non-
intrusively in the background as the expert drives the car,
recording data can be time-consuming and challenging for
complex manipulation tasks with a robotic arm. Thus, it is
highly desirable to choose network architectures with the
appropriate inductive bias so as to improve sample efficiency.

In this paper, we consider end-to-end imitation learning to
reach, push, and pick-and-place in the presence of multiple
instances of the object of interest. The work presented in [1],
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Fig. 1. The robot must pick up the ten of clubs that is farthest from the
camera. The heat map is from an intermediate layer in the end-to-end trained
neural network and shows the network localizing the objects of interest even
though no explicit supervision was given about the location of the object
during training.

[5], [3], [4] address similar objectives. The Convolutional
Neural Network (CNN) architectures presented in these
papers are similar and each one can be decomposed into, (a)
vision layers, and (b) control layers. The vision layers are
comprised of a few convolution layers followed by a spatial
softmax layer. The spatial softmax layer enables them to
attend to an object and to localize it while allowing sample
efficient training. However, an inherent problem with spatial
attention for localization is that it works reliably only when
there is one instance of the object of interest. When there
are multiple instances of the object, the output of the spatial
softmax will be the weighted average of the locations of these
objects, rather than the location of any of the objects in the
scene. Thus, these architectures cannot be directly employed
to perform tasks that involve multiple instances of objects.

Clearly, there has to be a mechanism by which the network
is able to learn to focus on one particular instance of an
object. We propose using an attention mechanism with a
sense of “instance awareness” embedded in it. With this, the
policy network is capable of attending to one instance of the
object while ignoring the rest.

Our contributions are:

• We propose a network architecture for manipulation
tasks with a robot arm in the presence of multiple
instances of the object of interest.

• We evaluate the impact of the choice of network archi-
tecture on localization sample efficiency.

Expert data is collected via a teleoperation system to
operate the Yaskawa MotoMini and the Dobot Magician
robot arms (Figure 1) using a keyboard. The neural network
is trained for end-to-end imitation learning without any



additional supervision or pre-training. Even though the action
space is discrete in our setup, we find that object localization
emerges as the network is trained to imitate the expert
(Figure 1). We compare the localization performance of a
number of different architectures and show that the proposed
architecture has better sample efficiency.

II. RELATED WORK

One way to design a robot controller for visual manipula-
tion tasks such as pick-and-place is to construct a pipeline of
separately trained modules [11]. For example, one might first
train an object detector such as [12] to detect all objects in
the scene. The bounding box output (in 2D pixel coordinates)
of such a detector can then be used by another network that
is trained separately to predict the joint torques, which can
be used to pick up the relevant object. In contrast to the
pipelined approach, an end-to-end approach directly maps
pixels to actions. This has the benefit of a richer, more flex-
ible, and learnable intermediate representation that can offer
better overall performance. The superior performance of the
end-to-end approach compared to the pipelined approach has
been observed on a number of problems ranging from scene
text detection [17] to speech recognition [13] and has shown
promise in learning visuomotor policies [5].

Object detectors such as [12] predict a large number
of bounding boxes which are then suppressed using non-
maximum suppression to obtain the final bounding boxes
corresponding to objects in the scene. Since non-maximum
suppression is not differentiable, it cannot be used for
localization in end-to-end learning.

Fully Connected (FC) layers have been used to directly
regress the position of objects from the feature map cor-
responding to the image [14]. Similarly, convolution layers
have been used to regress the position of objects directly
from the feature map [15]. Although both these methods are
differentiable, they are not sample efficient. Spatial attention
using the spatial softmax operation offers a sample efficient
and differentiable way to localize objects.

A. Spatial Attention for Localization

The authors in [5] show the effectiveness of imitation
learning for training visuomotor policies using a small num-
ber of expert demonstrations collected using a virtual reality
teleoperation system that interfaces with a PR2 robot. The
end-to-end network in this paper maps raw RGBD images
to angular and linear velocities of the robot joints. The input
image is first processed by the vision layers, which consists
of a few convolution layers, to obtain a feature map. The
feature map is then passed through a spatial soft-argmax
layer [1], which serves as a spatial attention mechanism, that
enables the network to attend to a region in the feature map
corresponding to the object of interest. The output of spatial
soft-argmax layer is then passed through the control layers
of the network, which consists of a series of FC layers, to
predict the robot actions.

The utility of using the soft-argmax layer for developing
deep visuomotor policies has been demonstrated in other

papers as well. The work presented in [3] combines imitation
learning and model agnostic meta-learning [16] to infer
a policy from a single human demonstration. The paper
addresses the challenge of applying imitation learning in
the context of one-shot learning. The work presented in
[4] extends this algorithm for handling domain shifts when
recording expert demonstrations. The authors of [10] address
the problem of one-shot localization using a siamese network
with attention.

In [21], a distribution over functions is learnt to enable a
neural network to predict about multiple functions consistent
with the training data. In [22], a Gaussian distribution is
predicted so that the network can handle the presence of
multiple modes in the training data. Unlike these works,
the training data is deterministic in our case. As mentioned
earlier in Section I, the drawback of using the spatial soft-
argmax layer is that it can reliably localize the object of
interest only when there is one instance of it in the scene.
When multiple instances of an object are present in the scene,
the network must be able to focus on one instance of the
object while ignoring the others. For this, the network has
to have a sense of “instance awareness”.

B. Instance Awareness

The authors of [17] develop an attention-based Recurrent
Neural Network (RNN) architecture for recognizing relevant
portions of text from an image of the scene. First, a feature
map is extracted from the image using a CNN. The feature
map is then spatially weighted using an attention mechanism,
and the resulting output is fed to the RNN. The RNN
outputs individual characters from relevant portions of the
text present in the scene. This allows the architecture to
learn to shift its focus from one location to another within
the feature map over different time steps, thus allowing it to
read multi-line text as well.

The authors of [18] show that convolution fails at tasks
that involve a coordinate transform problem (i.e. predicting
pixel activation given spatial coordinates or vice versa).
The authors propose a simple fix which involves appending
the input to a standard convolution layer with 2 additional
channels that contains spatial coordinate information. They
call this the CoordConv layer. This enables networks to
generalize and allow them to learn convolution filters that
need to have spatial dependence embedded in them. The
authors demonstrate the usefulness of this approach in image
classification, object detection, generative modeling, and re-
inforcement learning. An attempt to use positional encoding
combined with attention to improve performance in machine
translation was made in [20] albeit with limited success.

III. NETWORK ARCHITECTURE

The proposed neural network for end-to-end imitation
learning is shown in Figure 2. The RGB image from the
camera x and the current state of the robot which includes
the 3D pose of the end effector and the gripper state c are
given as inputs to the network. The network predicts discrete
actions a0, a1, a2, and a3. The first three actions correspond



Fig. 2. The proposed architecture. The convolutional (Conv) layers used are Conv3x3(16)-ELU-Conv3x3(32)-ELU-Conv3x3(64)-ELU-MaxPool2D-
Conv3x3(64)-ELU-Conv3x3(128)-ELU-MaxPool2D-Conv3x3(128)-ELU-Conv3x3(128)-ELU-Dropout-Conv1x1(1)-Tanh. The intermediate FC layers are
FC16-ReLU-FC7-ReLU. The output layers for a0 to a2 are FC8-ReLU-FC3-Softmax, and the output layer for a3 is FC8-ReLU-FC2-Softmax. The feature
map g has only channel in our setup, but it can have more channels without any change in the subsequent layers. The use of pooling layers or strided
convolutions in the “Conv” block causes a reduction in the spatial resolution of g compared x, but this also reduces the memory requirement and the
number of learnable parameters. In our setup, the 30×30 feature map can resolve to within 1.5 cm on the table. If the training data exhibits multi-modality,
it may be desirable to use ht and ht−1 to predict at.

to the relative motion of the end effector along the X, Y,
and Z directions. Each of these actions are discretized to 3
possible values: {−1, 0,+1}. The last action a3 is binary
and corresponds to the gripper open/close command.

The RGB image observation x is passed through several
convolutional and pooling layers to produce the feature map
g. The intermediate value f corresponding to the 2D position
of the points of interest in the image is obtained from g using
layers described in more detail in the following paragraphs.
The current state of the robot c and the 2D position of
points of interest in the image, f , are passed through several
hidden layers to predict the actions a. Rather than directly
modeling the joint action space p(a|x, c), we decompose it as
shown in Eqn. 1 to autoregressively predict the actions. This
is preferable to assuming that the actions are independent,
especially when there is stochasticity in the training dataset.

p(a|x, c) = p(a0|x, c)
3∏

i=1

p(ai|a0, a1, ..., ai−1,x, c) (1)

We shall now consider the different ways one might obtain
f from the feature map g. Note that in all of these cases,
no additional supervision is provided to learn a particular
representation for f , and the mapping from g to f is learnt
as part of the end-to-end training under the constraint of the
architecture we choose.

A. Fully Connected Layers

The 2D position of the points of interest f may be derived
from the feature map g by passing through one or more
FC layers [14]. There is considerable freedom in how the
network chooses to represent the position of the points of
interest in f . However, as we shall show in the next section,
FC layers tend to overfit and generalize poorly when the
training dataset is small as is often the case for imitation
learning.

Fig. 3. Feature map object when one and two instances of the object are
present in the input image respectively.

B. Convolutional Layers

The vector f may be obtained from g by passing it
through several convolutional layers [15]. Unlike with FC
layers, the spatial invariance of convolution acts as a stronger
constraint resulting in improved generalization since the
same operations applied to one spatial region of the feature
map g have to be applied at all regions. However, as we
show in the results, convolutional layers can also overfit and
perform poorly.

C. Spatial Softmax Layer

The 2D points of interest in the image may be obtained
from the feature map g using the spatial softmax function.

ĝki,j = softmaxi,j

(
gki,j
)

(2)

fk
x =

∑
i,j

ĝki,ji (3)

fk
y =

∑
i,j

ĝki,jj (4)

where 1 ≤ k ≤ Cg , with Cg being the number of channels
in g and 0 ≤ i < Wg and 0 ≤ j < Hg , with Wg and Hg

being the width and height of g. This way of obtaining f has
no learnable parameters at all. By construction, it generalizes
well. To see why consider what happens when the object
of interest is in the center of the image (see x1 and g1



Fig. 4. Illustration of appending one-hot encoding of position for a 4x4
feature map.

in Figure 3). Because a convolutional network is used to
produce the feature map g, due to spatial invariance, if the
object is shifted in the image x, the peak corresponding to
the object in the feature map g is also shifted, and the spatial
softmax will, by construction, give the correct localization in
f .

While this method of extracting position from the feature
map generalizes well, it has a major shortcoming. It assumes
that one and only one object of interest is present in the
image. When multiple instances of the object of interest are
present in the image, the feature map has multiple peaks each
corresponding to one instance (see x2 and g2 in Figure 3).
When multiple peaks are present in the feature map g
each corresponding to a different instance of the object
in the image, the spatial softmax function gives incorrect
localization by providing a (weighted) average 2D position of
the peaks. The 2D position thus obtained may not correspond
to the position of any object in the scene.

D. Spatial Softmax after Appending One-Hot Encoded Po-
sition

When there are multiple instances of the object of interest
in the scene, say multiple apples, in order to pick one of the
objects, it is necessary to specify an ordering of positions so
that one position may be preferred over the other when the
object of interest occurs at both positions. The preference
for positions may be specified implicitly in the training data
at the expense of sample complexity. One way to break the
spatial invariance is to append the feature map g with a map
where each pixel encodes its own position using a one-hot
vector [17] as shown in Figure 4. The augmented feature map
g̃ is passed through a 1×1 bottleneck convolution and then
the spatial softmax operation is performed as before. While
the one-hot representation gives considerable flexibility, the
notion of neighbourhood of pixels is lost. This results in poor
generalization to new positions of the object that are not in
the training set.

E. Spatial Softmax after Appending 2D Coordinates

Similar to the previous idea, one might encode the position
of each pixel of the feature map not by a one-hot vector, but
by 2D coordinates (x, y) as shown in Figure 5. We would
expect this representation to generalize better to positions
unseen in the training set. However, the ordering of points
indicating the preference of one position over another must
still be specified by the data.

Fig. 5. Illustration of appending 2D co-ordinate encoding of position for
a 4x4 feature map.

Fig. 6. Illustration of appending score map to a 4x4 feature map. The
score map is in raster scan order where the score corresponding to the first
pixel of the feature map is 0.0, and the score corresponding to the last pixel
is 1.0.

F. Spatial Softmax after Appending Raster Scan Score Map

In order to further reduce the number of training samples
needed, it may be preferable to directly specify the order
of preference of different positions. For example, we may
want to pick objects from the scene in raster scan order.
So, if the object of interest is present both in the left-top
of the image and the right-bottom of the image, then we
prefer the object at the left-top. To specify such an ordering
directly rather than implicitly in the training data, we propose
appending scores corresponding to the raster scan order to
the feature map g as shown in Figure 6. Note that the
score map is just a linear function of the (x, y) co-ordinates
discussed in Section III-E but with the weights frozen so that
a particular ordering is enforced. The augmented feature map
g̃ is processed as before.

IV. RESULTS

We first evaluate the different architectures discussed in
the previous section on synthetic data for their localization
performance. The proposed architecture is then evaluated for
end-to-end imitation learning of manipulation tasks including
reach, push, and pick-and-place.

A. Localization Performance

We construct a synthetic dataset by placing apple emojis at
random locations and distracting emojis at non-overlapping
positions against a blank background as shown in Figure 7.
The position of the first apple emoji (in raster scan order)
is the label. In the training dataset, either one or two apple
emojis are placed in three quadrants (all except the bottom-
right quadrant), but in the test dataset up to three apple
emojis and two distracting emojis are placed at random
locations across the entire image. When measuring accuracy,



Fig. 7. Feature map produced by the proposed architecture on an example
from the synthetic dataset

Fig. 8. Feature map produced by the proposed architecture when the input
image has 3 instances of the object. Note that during training, the network
has been exposed only to images containing one or two instances of the
object.

we consider the output of the network to be a match if the
pixel difference between the ground truth center and the
predicted center of the object along both the axes is less
than 8 px. Since we are only performing localization, the
neural network architecture used ends at f (Figure 2), and
the subsequent layers are not used.

Table I compares the performance of the different architec-
tures on a synthetic test dataset of 4096 samples. When using
FC layers for localization (Section III-A), the feature map
g is obtained from the RGB image using the architecture in
Figure 2 and is mapped to the 2D position f using FC layers1.
Similarly, when convolution layers are used for localization,
the 2D position f is obtained from g using convolution
layers2. The other rows in Table I correspond to the methods
described in Sections III-C to III-F.

Figure 7 shows a sample feature map produced by the
proposed architecture. We see that there are two peaks in
the feature map g corresponding to the two apples in x.
Following the proposed approach of appending a score map,
we see that the peak corresponding to the apple at the
bottom has been suppressed in ĝ. Although the training
set contains a maximum of two apples in the image, the
proposed architecture generalizes and works even in the
presence of three apples (Figure 8).

With the exception of the proposed architecture, the lo-
calization performance drops significantly when the training
dataset size is reduced from 4096 to 32. Even though a
dataset size of 32 may seem too small, the training samples
are uncorrelated and generated at random, whereas it is
common in imitation learning for successive observations to
be highly correlated since they are successive frames of a

1FC layers used are FC1024-ELU-FC128-ELU-FC2.
2Convolution layers used are Conv3x3-ELU-Conv3x3-ELU-Conv3x3-

ELU-MaxPool2-Conv3x3-ELU-Conv3x3-ELU-MaxPool2-Conv3x3-ELU-
Conv3x3-ELU-Conv1x1-ELU-Conv1x1.

Method Accuracy
Ntrain = 4096

Accuracy
Ntrain = 32

FC layers 55.71% 5.96%
Conv layers 84.5% 13.04%
Spatial Softmax 25.17% 23%
Spatial Softmax with one-
hot encoded position

99.51% 71.31%

Spatial Softmax with 2D
co-ordinate map

100% 91.5%

Spatial Softmax with
raster scan score map
(proposed)

100% 99.39%

TABLE I
LOCALIZATION ACCURACY IN EXPERIMENT A

Method Reach Push Pick-and-Place
FC layers 26.6% 13.3% 10%
Spatial Softmax with
raster scan score map
(proposed)

100% 86.6% 85%

TABLE II
TASK COMPLETION SUCCESS RATE IN IMITATION LEARNING

Fig. 9. Feature map produced by the proposed architecture on a sample
observation for the push task.

Fig. 10. Feature map produced by the proposed architecture on a sample
observation for the pick-and-place task.

demonstration. So, it is appropriate to evaluate performance
on very small training sets.

B. Imitation Learning Performance

To evaluate the performance of the proposed architecture
for imitation learning, we built a teleoperation system where
the Yaskawa MotoMini and the Dobot Magician can be
controlled through a keyboard. The RGB camera along with
the current state of the robot which includes the 3D end-
effector pose and the gripper state are sampled and discrete
motor commands are issued at 5 Hz. The network is trained
using Adam optimizer [19].

For the reach task, 15 demonstrations are collected for
training and the learnt network is evaluated with 15 roll-outs.
We consider the roll-out to be successful if the end-effector



tip is within 2 cms of the target. For the push task, 15 expert
roll-outs are collected for training and the trained network
is evaluated with 15 roll-outs. The roll-out for pushing is
considered successful if the object is pushed horizontally by
at least 30 cms. For the pick-and-place task, we collected 10
expert demonstrations and evaluated the performance of the
proposed network over 20 roll-outs. The pick-and-place is
considered successful if the right playing card is picked up
and placed at the edge of the table.

Table II compares the performance of the proposed ap-
proach with the FC layer1 approach for mapping g to f
as described in Section III-A which is equivalent to the
architecture in [5] with the spatial softmax layer removed
due to its inability to fit the training data when multiple
instances of the object are present in the scene. With the use
of FC layers instead of the proposed architecture, we find that
the network generalizes poorly and successfully completes
the task only when the placement of objects is similar to a
demonstration in the training set. For the proposed approach,
the two failures in the push task were due to the object
toppling over. With the pick-and-place task, in one instance,
the suction failed to pick up the object and in the other two,
the end-effector did not reach the right position to pick up
the object. Figures 9 and 10 show sample feature maps g
and the corresponding input RGB images. Even though the
action space is discrete, we find that localization of objects
of interest has emerged as a consequence of training the
network for end-to-end imitation learning. For the pick-and-
place task, we find that the feature map g is more diffuse
because of the size of the playing card happens to exceed
the receptive field of the convolutional layers. As shown in
Figure 10, the network compensates for this by detecting the
edge of the card in such a way that the subsequent layers
can still localize the card.

V. CONCLUSIONS

Learning end-to-end visuomotor policies requires sample
efficient and differentiable localization. We find that sample
efficient localization in the presence of multiple instances
of the object of interest in the scene requires breaking
spatial invariance of convolution in a constrained manner.
We propose doing this by appending a score map to the
feature map produced by the convolution layers. The score
map indicates our preference for one position over another
when the object of interest is present at more than one
location. When combined with spatial attention, the resulting
localization layers are differentiable, sample efficient, and
can work in the presence of multiple instances of the object
of interest. The proposed network architecture generalizes
to more instances of the object than in the training dataset
and to locations not in the training dataset. When used for
imitation learning to perform reach, push, and pick-and-place
tasks, it enables learning from as few as 15 demonstrations.
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