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Abstract. Evolution Strategy (ES) is a powerful black-box optimization
technique based on natural evolution. An essential step in each iteration
of an ES method entails ranking candidate solutions based on some fitness
score. In the context of Reinforcement Learning (RL), this ranking step
requires evaluating multiple policies. This evaluation is presently done
via on-policy approaches: each policy’s score is estimated by interacting
several times with the environment using that policy. Such approaches
lead to many wasteful interactions since, once the ranking is done, only
the data associated with the top-ranked policies are used for subsequent
learning. To improve sample efficiency, we propose a novel off-policy
alternative for ranking based on a local approximation for the fitness
function. We demonstrate our idea for state-of-the-art ES methods such as
Augmented Random Search (ARS) and Trust Region Evolution Strategy
(TRES). Simulations in MuJoCo tasks show that, compared to the original
methods, our off-policy variants have similar running times for reaching
reward thresholds but need only around 70% as much data on average.
In fact, in some environments, such as HalfCheetah-v3 and Ant-v3, we
need only about 50% as much data. We also emphasize that our method
provides scope for ample parallelization. Therefore, the running times of
our proposed ES variants is several orders of magnitude less than those
of other popular non-ES RL methods such as TRPO, PPO, and SAC.

Keywords: Reinforcement Learning · Evolutionary Strategies · Off-
policy ranking · ARS · TRES

1 Introduction

In optimization, features of the objective function such as linearity, convexity, or
differentiability often are either non-existent, unknown, or impossible to detect.
An Evolution Strategy (ES) [8], due to its derivative-free nature, is a go-to
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alternative in such scenarios. [15] introduced the initial competitive Evolution
Strategies (ES) approach within Reinforcement Learning (RL) scenarios. However,
the efficacy of that technique heavily hinges on numerous intricate concepts and
the application of neural networks to parameterize policies. These intricacies
encompass converting rewards into rankings and utilizing these rankings for
computing updates, partitioning the action space of Swimmer-v1 and Hopper-v1
to promote exploration, and adopting policies parameterized by neural networks
with virtual batch normalization.

Fortunately, recent advancements in ES methodologies have shown that such
complexities might not be essential. Augmented Random Search (ARS) [11] and
Trust Region Evolution Strategy (TRES) [10] demonstrate that these complexi-
ties can potentially be bypassed. They achieve this by scaling update steps using
reward standard deviation instead of converting rewards into ranks. Importantly,
they attain state-of-the-art performance using linear policies, which can signifi-
cantly reduce computation times. These methods also reveal that working with
deterministic linear policies can often yield state-of-the-art performance.

Our research introduces innovative off-policy adaptations of ARS and TRES.
These adaptations maintain similar computation times as the original techniques
but require notably less data (sometimes as little as 50%).

The formal motivation for our work is as follows: explore ES algorithms in
RL that minimize the number of agent-environment interactions. Clearly, this
would be of significance in practical RL. A vital example is robotics, where
collecting samples is very expensive since the process involves active calibration,
maintenance, and safety checks for every component, and overlooking these can
result in unsafe behaviours.

We now describe how existing ES methods for RL operate and also point out
the key step at which they are sample-inefficient. Recall that, in each iteration, a
generic ES method i.) obtains a bunch of candidate solutions from some sampling
distribution, ii.) ranks them using some fitness score based on the objective
function, and iii.) uses the top-ranked ones to update the sampling distribution
for use in the next iteration. In the context of RL, a candidate solution is a specific
policy, while its fitness is the associated value function. Existing techniques such
as ARS and TRES use an on-policy approach to find this fitness score: interact
with the environment using every policy whose score needs to be estimated. Since
multiple policies need to be ranked in each iteration, current ES approaches end
up with significantly high interactions. Notably, most of this data is discarded in
each iteration except those related to the top-ranked policies.

Our proposed idea to improve sample efficiency is to replace the above wasteful
ranking approach with an off-policy alternative. Our new approach involves two
key ideas: the fitness function choice, and the use of a kernel approximation to
estimate the same. Their details are as follows.

1. Fitness Function: Instead of using the value function η(π̃) of a candidate
policy π̃ as its fitness score, our approach employs its approximation Lπ(π̃)
defined in terms of a different policy π called the behavior policy [19, (6)].
Indeed, any ranking of policies based on an approximation to the value
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function is going to be sub-optimal. However, it is also the key factor that
enables very first off-policy ranking. As we shall see, the data generated by
the single policy π can now be used to rank all the candidate policies!

2. Kernel Approximation: Lπ(π̃) is estimated in [19] via importance sampling
(see (40) in ibid). This approach works only when both π and π̃ are stochastic.
However, the sample efficiency of ARS crucially relies on the candidate policies
being deterministic. Therefore, simply using stochastic policies in ARS to
incorporate the importance sampling idea isn’t ideal for sample efficiency. To
circumvent this issue, we propose to alternatively smooth the deterministic
policies using a suitable kernel function. This approach is loosely inspired
from [7,6], which studies extending ideas from discrete contextual bandit
settings to the continuous case.

Key Contributions: The main highlights of this work are as follows.

1. We propose novel variants of ARS and TRES; see Algorithms 1 and [2,
Algorithm A1]. Their main feature is the off-policy ranking step: data from just
a single behavior policy is used to identify the best among multiple candidate
policies. We emphasize that this is the first usage of off-policy ranking in
any ES method. Moreover, our idea is extremely simple to implement and
directly applies to deterministic policies. Also, while we use this idea for ARS
and TRES, it is extendable to other ES methods.

2. Our simulations on benchmark MuJoCo locomotion tasks (Section 4) show
that our variants reach reward thresholds in running times comparable to the
original ARS and TRES. However, we often need only 50-80% as much data.
This is significant when interactions with the environment is either hard or
expensive, e.g., robotics.

3. We also do sensitivity to seed and hyperparameter tests similar to [11]. Our
results are similar in spirit to what was obtained in ibid. That is, the median
trajectory crosses the reward threshold in most environments, confirming
that our algorithm is robust to seed and hyperparameter choices. This is in
sharp contrast to behaviors of non-ES methods, e.g., DDPG [9], TRPO [16],
PPO [17].

2 Preliminaries

Here, we describe our RL setup and provide an overview of the original ARS and
TRES algorithms.

2.1 RL Setup and Important Definitions

Within the context of reinforcement learning, the primary goal is to acquire a
control policy that empowers an agent to optimize its anticipated rewards within
a specific task. During each discrete time step t, the agent perceives the state of
its environment as st ∈ S (state space), and it selects an action at ∈ A (action
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space) from a policy distribution denoted as π(at|st). Subsequently, the agent
executes this chosen action, leading to a transition to a new state st+1 ∼ P(s′|s, a)
and an associated scalar reward rt = r(st, at). The overarching objective is to
learn a policy that maximizes the agents average reward

η(π) := lim
H→∞

1

H
Eτ∼Pπ(τ) [η̂(π)] ,

where η̂(π) ≡ η̂H(π, τ) =
∑H−1

t=0 r(st, at) and Pπ(τ) is the likelihood of a tra-
jectory τ = {(s0, a0, r0), (s1, a1, r1), ...} under the policy π. The aforementioned
goal then is to find a policy that solves

max
π

η(π). (1)

Note that, the sequence of states under a policy π forms a Markov chain. If
this chain has a stationary distribution dπ and

dπ(s) = lim
H→∞

1

H

H−1∑
t=0

Pτ∼Pπ(τ)(st = s), (2)

then η(π) = Es∼dπ,a∼π[r(s, a)].
In our later discussions, we will also be using some terms related to the value

function such as the state-bias function (Vπ), action-bias function (Qπ), and the
advantage function (Aπ). These are given by

Vπ(s) := Eτ∼Pπ(τ)

[ ∞∑
t=0

(r(st, at)− η(π))|s0 = s

]

Qπ(s, a) := Eτ∼Pπ(τ)

[ ∞∑
t=0

(r(st, at)− η(π))|s0 = s, a0 = a

]
and Aπ(s, a) := Qπ(s, a)− Vπ(s), respectively.

2.2 Review of ARS and TRES

ARS belongs to a family of iterative black-box optimization methods called
random search [12]. Basic Random Search (BRS) is the simplest member of
this family and is also where the origins of ARS lie. For ease of exposition, we
first explain BRS’s approach to solving (1). Throughout this subsection, we
restrict our attention to finite-horizon MDPs where the search space is some
parameterized family of policies. Note that this is often the case in practical RL
and is also what we deal with in our MuJoCo simulations.

For the above setup, the problem in (1) translates to

max
θ

Eτ [η̂(πθ)] ≡ max
θ

Eτ [η̂H(πθ, τ)] (3)

for some fixed H. In general, this objective function need not be smooth. To
circumvent this issue, BRS looks at its smooth variant and then uses the idea of
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a stochastic gradient ascent. Specifically, the alternative objective considered is
EδEτ [η̂(πθ+νδ)], where ν is a suitably fixed scalar, and δ is a random perturbation
made up of i.i.d. standard Gaussian entries. Further, in each iteration, the
gradient of this function is estimated via a finite difference method. That is, N
random directions δ1, . . . , δN are first generated in the parameter space, η̂(πθ+νδk)
and η̂(πθ−νδk) are then estimated by interacting with the environment using
πθ+νδk and πθ−νδk for each k, and finally 1

N

∑N
k=1[η̂(πθ+νδk) − η̂(πθ−νδk)]δk is

used as a proxy for the gradient at θ. BRS’s update rule, thus, has the form
θj+1 = θj +

α
N

∑N
k=1

[
η̂(πθj+νδk)− η̂(πθj−νδk)

]
δk for some parameter α > 0.

[11] developed ARS by making the following changes to BRS. To begin
with, they restricted the search space to a class of deterministic and linearly
parameterized policies: a policy now is represented by a matrix M and the vector
Ms denotes the deterministic action to be taken at state s under that policy.
Further, three modifications were made to the update rule of BRS. The first was
to scale the gradient estimate by the standard deviation of the η̂ values; this yields
the ARS-V1 algorithm. The second was to normalize the states, given as input to
the policies, so that all state vector components are given equal importance; this
yields ARS-V2. The final modification was to pick some b < N and use only the
b best-performing search directions for estimating the gradient in each iteration.
The first and the third step yield the ARS-V1t algorithm, while the combination
of all three gives ARS-V2t. The ARS-V2t variant is of most interest to us and its
update rule has the form Mj+1 = Mj +

α
bσR

∑b
k=1[η̂(πj,(k),+)− η̂(πj,(k),−)]δ(k),

where σR is the standard deviation of the 2b η̂ values, δ(k) denotes the k-
th largest direction, decided based on the value of max{η̂(πj,k,+), η̂(πj,k,−)}
for different k choices, and πj,k,+(s) = (Mj + νδk)diag(Σj)

−1/2(s − µj) and
πj,k,−(s) = (Mj − νδk)diag(Σj)

−1/2(s− µj) with µj and Σj being the mean and
covariance of the 2bHj states encountered from the start of the training.

The reason for focusing on ARS-V2t is that, in MuJoCo tasks, it typically
outperforms the other ARS variants and also the previous state-of-the-art ap-
proaches such as TRPO [16], PPO [17], DDPG [9], the ES method from [15], and
the Natural Gradient method from [14]. This shows that normalization of states,
and then ranking and only picking the best directions for updating parameters
often helps in improving the sample efficiency. Nevertheless, in each iteration,
ARS uses an on-policy technique to estimate η̂(πj,k,+) and η̂(πj,k,−) for each k
so that the b best-performing directions can be identified. Because of this, we
claim that ARS still does more interactions with the environment than what is
needed. Also, in each iteration, it discards data that do not correspond to the
top-ranked policies.

TRES [10] is another state-of-the-art ES method that has been shown to
outperform methods such as TRPO, PPO, and the ES method from [15]. While
broadly similar, the major differences between TRES and ARS is in the choice
of the objective function. Instead of using a simple sum of rewards on a single
trajectory as in (3), TRES uses a novel local approximation ([10, (25)]) to the
value function that matches the latter up to the first-order. The main advantage of
this alternative choice is that it guarantees monotonic improvement in successive
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Algorithm 1 Off-policy ARS
1: Setup: State space Rn, Action Space Rp

2: Hyperparameters: step-size α, number of directions sampled per iteration N ,
standard deviation of the exploration noise ν, number of top-performing directions
to use b, bandwidth to use for kernel approximation h, number of behaviour policy
trajectories to run nb

3: Initialize: M0 = 0 ∈ Rp×n, µ0 = 0 ∈ Rn, Σ0 = In ∈ Rn×n (identity matrix), j = 0
4: while ending condition not satisfied do
5: Sample δ1, δ2, . . . , δN in Rp×n with i.i.d. Standard Gaussian entries
6: Run nb trajectories using policy parameterized by Mj , resulting in Nd interactions
7: Sort the directions δk based on fπj (δk, h) scores (using (7)), denote by δ(k) the

k-th largest direction, and by πj,(k),+ and πj,(k),− the corresponding policies
8: Collect 2b rollouts of horizon H and their corresponding return (η̂(·)) using the

2b policies of the b best direction

πj,(k),+(s) = (Mj + νδ(k))diag(Σj)
−1/2(s− µj)

πj,(k),−(s) = (Mj − νδ(k))diag(Σj)
−1/2(s− µj)

9: Make the update step:

Mj+1 = Mj +
α

bσR

b∑
k=1

[η̂(πj,(k),+)− η̂(πj,(k),−)]δ(k),

where σR is the standard deviation of 2b returns used in the update step.
10: Set µj+1, Σj+1 to be the mean and covariance of the 2bH(j+1) states encountered

since the start of the training
11: j ← j + 1
12: end while

policy estimates. Also, this new objective function enables TRES to use the same
data from top performing directions to update the parameters multiple times
in the same iteration. This is not possible with the objective function used in
ARS, and is claimed to be core reason for improving sample efficiency. A detailed
review of TRES is given in [2, Appendix B].

3 Off-policy ARS and TRES

Here, we provide a detailed description of our proposed approach to improve
upon the wasteful on-policy ranking step in ARS. We use the same idea also to
improve upon TRES, but leave these details to [2, Appendix C].

Intuitively, in each iteration of our ARS variant, we plan to identify a suit-
able deterministic policy, interact with the environment using just this single
policy, and then use the resultant data to rank the 2N deterministic policies
{πj,k,+, πj,k,− : 1 ≤ k ≤ N}. As a first step, we come up with a way to ap-
proximate the value function of a deterministic policy π̃ in terms of another
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deterministic policy π. We focus on deterministic policies here since ARS’s
performance crucially depends on this determinism.

If π and π̃ were stochastic in nature, then such an approximation has already
been given in [19], which itself is inspired from similar estimates given in [5] and
[16]. We now discuss the derivation of this approximation.

Consider the average reward RL setup described in Section 2.1. Suppose
that, for every stationary policy π, the induced Markov chain is irreducible and
aperiodic and, hence, has a stationary distribution dπ satisfying (2). In this
framework, [19, Lemma 1] showed that the value functions of the two stochastic
policies π and π̃ satisfy

η(π̃) = η(π) + Es∼dπ̃,a∼π̃ [Aπ(s, a)] . (4)

Given this relation, a natural question to ask is whether η(π̃) can be estimated
using just the data collected by interacting with the environment using π. The
answer is no, mainly because the expectation on the RHS is with respect to the
states being drawn from dπ̃. In general, this distribution is unknown a priori and
is also hard to estimate unless you interact with the environment with π̃ itself.

Inspired by [5] and [16], [19] proposed using

Lπ(π̃) := η(π) + Es∼dπ,a∼π̃ [Aπ(s, a)] (5)

as a proxy for the RHS in (4) to overcome the above issue. Two notable benefits
arise from the aforementioned approximation. The first is that Lπ(π̃), since it uses
dπ instead of dπ̃, can be estimated from only environmental interactions involving
π. Second, and importantly, [19, Lemmas 2, 3] showed that |Lπ(π̃) − η(π̃)| is
bounded by the total variation distance between π and π̃. Thus, when π and π̃
are sufficiently close, an estimate for Lπ(π̃) is also one for η(π̃). Hence, Lπ(π̃)
paves the way for estimating η(π̃) in an off-policy fashion, i.e., using data from a
different policy π. Henceforth, we refer to the policy chosen for interaction (e.g.,
π above) as the behavior policy and the one whose value needs to be estimated
(e.g., π̃ above) as the target policy.

We now extend the above idea to the case with deterministic policies, which
we emphasize is one of our main contributions. While the idea may look simple
on paper, the actual extension is not at all straightforward. The key issue is
that, in the case of stochastic policies, the idea of importance sampling and, in
particular, the relation Es∼dπ,a∼π̃ [Aπ(s, a)] = Es∼dπ,a∼π

[
π̃(a|s)
π(a|s)Aπ(s, a)

]
is used

for estimating the second term in (5). However, for deterministic policies, the
ratio π̃(a|s)/π(a|s) will typically be 0, which means the estimate for the second
term will also almost always be zero. Hence, this importance sampling idea for
estimating Lπ(π̃) fails for deterministic policies.

The alternative we propose is to modify the definition of Lπ(π̃) so that it
becomes useful even for deterministic policies. Specifically, we redefine Lπ(π̃) as

Lπ(π̃) = η(π) + Es∼dπ,a∼π

[
Kh(∥a−π̃(s)∥)
Kh(∥a−π(s)∥)Aπ(s, a)

]
, (6)
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where Kh(u) = h−1K(u/h) and K : R → R denotes a suitably chosen kernel
function satisfying

∫
K(u)du = 1 and

∫
uK(u)du = 0. This approach is loosely in-

spired from [7,6] which look at extending policy evaluation and control algorithms
from discrete contextual bandit settings to the continuous case.

While there are multiple choices for K, we use K(u) = e−u2

in this work.
Substituting this definition in (6) gives

Lπ(π̃) = η(π) + Es∼dπ

[
e−∥π(s)−π̃(s)∥2/h2

Aπ(s, π(s))
]

Table 1: Comparison of median number of interactions for ARS, TRES, OP-ARS
and OP-TRES on MuJoCo locomotion tasks to achieve prescribed reward thresholds
(Th). Intx represents the number of interactions in order of 103. % column represents
the percentage of data required by our method compared to the original method.
The * in Ant-v3 signifies the interleaving of on-policy evaluations. The # signifies
16 seeds were used instead of 8 in Walker2d environment for ARS and OP-ARS.
We use the following abbreviations in the table below: SW=Swimmer, HO=Hopper,
HC=HalfCheetah, WA=Walker2d, AN=Ant, HU=Humanoid

Env Th ARS OP-ARS TRES OP-TRES
N b Intx Intx % N b Intx Intx %

SW 325 2 1 520 (580) 440 85 4 2 800 (560) 800 100
HO 3120 8 4 883 (1098) 765 86 - - - - -
HC 3430 32 4 4480 (3840) 2400 53 16 8 2720 (2400) 1275 46
WA# 4390 40 30 18802 (23151) 14414 76 - - - - -
AN 3580 60 20 10492 (17711) 15071* 143 40 20 10849 (10409) 6165 56
HU 6000 350 230 40852 (23594) 14260 35 - - - - -

The reason for the above choice of K is that it performs quite well in simula-
tions and also provides a clean intuitive explanation for Lπ(π̃). That is, Lπ(π̃)
assigns a higher value to a policy π̃ if it takes actions similar to π at all those
states s where Aπ(s, π(s)) is large. In summary, Lπ(π̃) given above provides us
with the desired expression to approximate the value function of a deterministic
target policy with only the data from a deterministic behavior policy.

We now discuss incorporating this expression in ARS to improve its sam-
ple efficiency. In particular, we now show how we can rank the 2N policies
{πj,k,+, πj,k,−}, generated randomly in each iteration of ARS, in an off-policy
fashion. The first thing we need to decide is the choice of the behavior policy
for interacting with the environment. Recall from the discussion below (5) that
|η(π̃)− Lπ(π̃)| is small when π and π̃ are sufficiently close. Now, since the policy
parameterized by Mj is close to each of the 2N policies specified above, it is the
natural choice for the behavior policy and, indeed, this is what we use.

In summary, our ranking in each iteration works as follows:

1. Interact with the environment using the behavior policy πj ≡ πMj
on nb

number of trajectories. Each trajectory here is presumed to have H many time
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Fig. 1: Box plots of number of interactions required to reach the reward threshold
in ARS, TRES, OP-ARS and OP-TRES. The number next to the algorithm’s name
represents the number of seeds in which the threshold was reached.

steps (or less in case of premature termination). Suppose these interactions
result in Nd (st, at, rt, st+1) transitions overall.

2. Estimate Qπj
(st, at), 0 ≤ t ≤ Nd−1, using the definition given in Section 2.1.

3. Estimate

fπj
(δk, h) = E[e−∥νδks∥2/h2

Qπj
(s, a)] ≈ 1

Nd

Nd−1∑
t=0

[e−∥νδks∥2/h2

Qπj
(st, at)]

(7)

for each 1 ≤ k ≤ N. Note that fπj
(δk, h) is a proxy for the expression in

(6). In that, it ignores all the constant terms: those that depend only on the
behavior policy πj .

4. Use the above estimates to rank {πj,k,+, πj,k,−}.

Once the b best–performing directions are identified, the rest of our ARS
variant more or less proceeds as the original. That is, we come up with better
estimates of the value-functions of these top policies in an on-policy fashion and
improve upon Mj along the lines discussed in Section 2.2. The complete details
are given in Algorithm 1. A detailed section discussing the differences in the
original ARS from our off-policy variant is given in [2, Appendix A].

We end our discussion here by pointing out that the original ARS used 2N
interaction trajectories, each of length roughly H, in each iteration. In our variant,
we only need 2b + nb many trajectories. When b < N, this difference is what
leads to the significant reduction in interactions seen in our simulations.
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Fig. 2: The figures in the top row represent the evaluation of OP-ARS over 100 seeds.
The figures in the bottom row represent the evaluation of OP-ARS’s sensitivity to
hyperparameters. The average reward is plotted against episodes. The thick blue line
represents the median curve, and the shaded region corresponds to the percentiles
mentioned in the legend.

4 Experiments

We compare ARS and TRES with our proposed off-policy variants on benchmark
MuJoCo [18] tasks available in OpenAI gym [1]. We show that these variants
(henceforth, called OP-ARS and OP-TRES) i.) take significantly less number
of interactions to reach rewards thresholds, ii.) are robust to random seeds and
hyperparameter choices, and iii.) have very low running times. Separately, in [2,
Appendix G], we show that OP-ARS outperforms ARS even on Linear Quadratic
Regulator. Finally, we discuss some limitations of our proposed approach.

Expt. 1 (Sample efficiency): Because an ES method is stochastic, the inter-
mediate policies that are learned will be different on each run. Hence, to have a
robust comparison, we initiate all random number generators and OpenAI gym
environments as a function of a single seed, and then study the performance
of our algorithms for eight uniformly random seeds. Further, after every ten
iterations of our Algorithm, we compute the value function of the current policy
(e.g., the policy parameterized by Mj in Algorithm 1) by averaging the total
reward obtained over 100 trajectories. The sample complexity of our ES methods
on each of the eight seeds is the first time the value function of the learned policy
is above a certain reward threshold. We use the same thresholds that were used in



Improving Sample Efficiency in Evolutionary RL Using Off-Policy Ranking 11

[11]. The comparison of sample complexity estimates for ARS, TRES, OP-ARS,
and OP-TRES is given in Table 1, Figures 1, and 3.

In Table 1, the ‘Env’ and ‘Th’ columns represent the environment names
and its corresponding thresholds. The median of sample complexity estimates is
provided under the column titled ‘Intx’ for different N and b choices. In particular,
the values in round brackets are for the case where b random directions are chosen
and data from all the b directions is used for updating the policy parameter.
The ones outside are for the case where N directions are chosen and data from
only the top performing b directions is used for parameter update. Finally, the
numbers under % denote the percentage of data required by OP-ARS (resp.
OP-TRES) to reach the threshold compared to ARS (resp. TRES). Clearly, the
median estimates (see bold text in Table 1) for our variants are significantly
lower than those of ARS and TRES.

In Table 1, observe that there are two scenarios: either sampling only b direc-
tions and using all of them for parameter update is better (see HalfCheetah and
Humanoid in ARS, and HalfCheetah and Ant in TRES) or sampling N direc-
tions and then picking the top-performing b directions is better (e.g., Swimmer,
Hopper, Walker2d, and Ant in ARS). The former scenario corresponds to the
case when the overhead of evaluating the additional N − b directions is costlier
than the benefit of exploring more directions and using the best performing ones.
In both scenarios, by circumventing this overhead issue via off-policy ranking,
OP-ARS and OP-TRES significantly cuts down on sample complexity. Note that
Humanoid-v3 is considered the most challenging MuJoCo environment.

While Table 1 shows that the median of the timesteps needed for the first
crossover happens much earlier in our off-policy variants, it doesn’t fully capture
the variance. We address this in Figures 1 and 3. Figure 1 consists of box plots
of the number of interactions required to reach the threshold in ARS, TRES,
OP-ARS and OP-TRES. The number of seeds on which each method reached the
threshold is mentioned next to the algorithm’s name. Clearly, the variance in our
approach is either less or comparable to original algorithms. The advantage is
particularly significant for OP-TRES in Ant-v3 and for OP-ARS in Humanoid-v3.

In Figure 3, the overall progress of various algorithms is shown for different
seeds. In particular, the horizontal green dotted lines represent the specific reward
thresholds, while the different curves correspond to different seeds. The blue and
red dots on the curves represent the first timestep where the threshold is reached.
Finally, the star represents the median of all the dots marked over various runs.
The plots clearly show that our methods reach the threshold significantly faster
than the original methods in most cases.

Due to space constraints we have represented the figures only from few en-
vironments, the figures of all the remaining environments can be found in [2,
Appendix I]. The details about the environment is given in [2, Appendix D] and
the implementation details are given in [2, Appendix E].

Expt. 2 (Random Seeds and Hyperparameter choices): The top row of
Figure 2 shows the performance of OP-ARS over 100 random seeds sampled from
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[0, 10000]. We see that the median (thick blue line) crosses the threshold in most
of the environments, demonstrating robustness to seeds.

Next, we discuss the sensitivity of OP-ARS to the two new hyperparame-
ters we introduce: h (the bandwidth choice in kernel approximation) and nb

(the number of trajectories generated using the behaviour policy). For this, we
first identify multiple choices for h and nb, wherein the the performance of the
proposed algorithms is reasonable (see [2, Appendix F]). Next, we run our al-
gorithm under all possible combinations of these hyperparameter choices. The
performance plots (see bottom row of Figure 2) match those in the 100 seed test
done above, thereby verifying that the algorithm’s performance is not sensitive
to hyperparameter choices. We don’t look at the sensitivity of OP-ARS to other
hyperparameters such as ν, α,N, b. Such a study has been done in [11] for ARS
and the role of these parameters in both ARS and our off-policy variant are similar.

Expt. 3 (Comparison to non-ES methods): Table 2 shows the quality of the
policy obtained after a fixed number of environmental interactions under various
RL methods. While the outputs among ES methods are always comparable,
there are certain environments, e.g., HalfCheetah and Humanoid, where non-
ES methods such as SAC and/or DDPG truly outperform others. The core
justification rests on the premise that these alternative techniques, not grounded
in Evolution Strategies (non-ES), have been meticulously refined to extract the
maximum information from a provided dataset. Simultaneously, it’s of utmost
importance to acknowledge the constrained potential for parallelization in non-
Evolution Strategies (ES) approaches. This constraint becomes particularly
apparent in Policy-based methods or Actor-Critic methods, especially when the
primary objective is to refine a single policy. Within such a framework, the
algorithm generates a minimal amount of data from this specific policy in each
iteration. Conversely, parallel Deep Reinforcement Learning (DRL) techniques like
IMPALA [3] commonly engage in the exchange of network parameters or gradient
vectors among different nodes, contributing to an increased computational load
on the communication network. In contradistinction, parallel ES methods share
only scalar values, typically representing fitness scores, among the workforce,
thereby upholding a communication process that is inherently more efficient.
Accordingly, as Table 3, shows wall-clock times recorded to achieve different
thresholds are remarkably high for non-ES methods, even when executed on
GPUs. In contrast, our methods, along with ARS and TRES, were executed on
CPUs. An exciting future direction would be to optimize ES methods to enhance
their performance.

5 Conclusion

This work proposes an off-policy ranking idea for improving sample efficiency in
evolutionary RL methods. While traditional off-policy methods are not directly
applicable to deterministic policies, we enable it using kernel approximations.
Our experiments show that our proposed ARS and TRES variants have roughly
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Table 2: The maximum average policy return after running the algorithms for 1 million
timesteps (2 million for Humanoid-v3). The abbreviations SW, ..., HU have similar
expansions as in Table 1

Algorithm SW HO HC WA AN HU
ARS 358 3308 3147 2481 1246 657
OP-ARS 345 3308 2890 1759 1084 881
TRES 346 - 2713 - 1310 -
OP-TRES 344 - 3559 - 1208 -
TRPO 367 3753 4838 5346 4568 4329
PPO 367 1018 6682 4368 3909 1153
DDPG 42 2775 12025 3928 721 263
A2C 201 1028 2885 395 -38 472
SAC 353 3644 11434 4952 5588 6949

Table 3: Wall clock time required to reach the standard threshold (see Table 1).
HU 5% means 5% of the standard threshold for HU. The notation − means that the
corresponding thresholds were not reached.

Algorithm SW HO HC WA AN ≈ HU
5% 10% 15% 25% 100%

ARS 40 48 42 364 322 30 112 454 696 1050
OP-ARS 52 80 110 366 665 34 79 205 400 625
TRES 32 - 37 - 581 - - - - -
OP-TRES 63 - 37 - 533 - - - - -
TRPO 267 1020 878 1656 - 357 2412 3789 3691 -
PPO 1658 - 1007 4390 5616 76 5803 24170 17106 -
DDPG - 5300 349 6434 - 7 - - - -
SAC 14692 6457 672 7704 10754 281 1374 1999 6293 24893

the same run time as the original, but reach reward thresholds with only 50-80%
as much interactions. We believe our approach is easily extendable to other ES
or Random Search methods as well. A promising direction of future work would
be to investigate the same theoretically.

One strong advantage of ES-based algorithms is that they are highly paral-
lelizable. It takes nearly a day to train a good policy for Humanoid-v3 using
techniques like TRPO. In contrast, we could train linear policies for the same
environment in less than an hour using ARS and OP-ARS (our method). This
opens up a lot of scope and curiosity to explore more research in the ES-based
methods.

Separately, recent hybrid algorithms that mix ES and Deep RL methods
have shown to be more sample efficient than ES methods. In CEM-RL [13], half
of the policies are trained using off-policy learning techniques like DDPG [9]
and TD3 [4], leaving the other half policies untouched; however, in the end, all
the policies are evaluated in an on-policy fashion. We strongly believe that our
off-policy ranking idea can help in these hybrid algorithms as well if off-policy
ranking is performed.
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Fig. 3: Figures representing the trajectories of various runs of ARS, OP-ARS,
TRES and OP-TRES algorithms where the number of interactions with the
environment is plotted against the average reward.
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