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Abstract— In this paper, we show how to realize robust safety-
critical control laws for robotic manipulators with a large
number of inequality constraints (>100). In particular, we use
control barrier functions (CBFs) formulated via the kinetic
energy terms to represent constraints like joint position and
velocity limits, both in configuration and task space. By using
the kinetic energy terms, we can realize model-free constraints
in a quadratic program (QP), which can be solved in real-
time, thereby demonstrating fast computation time despite the
presence of large constraints. We will consider two types of
CBFs, the reciprocal and the zeroing type, and integrate with
Control Lyapunov Function (CLF) based constraints to yield
a multi-objective QP. Further, we will provide feasibility and
continuity guarantees, thereby yielding a continuous, robust and
a safe control law for a broad class of robotic systems. Towards
the end, we will demonstrate two types of QP formulations in
a 6-DOF manipulator; one uses 109 constraints through the
reciprocal type, and the other uses 61 constraints using the
zeroing type of CBFs.

I. INTRODUCTION

With an increasing number of robots being utilized in
industries, safety has become an integral part. Thus, to
prevent any accident in such environments, especially when
human operators are working in the vicinity, it is imperative
to incorporate safety at all layers. Accordingly, safety-critical
control laws have been extensively explored by researchers
in the recent years where the goal is to ensure that a system
never enters an unsafe region [1]–[5]. Using control barrier
functions (CBFs) we can synthesize controllers for nonlinear
dynamical systems by providing formal safety guarantees
[6], [7]. Several robotic applications are time sensitive and
require that the safety guarantees be provided in real-time.
In case of CBFs the constraints are expressed in the form
of quadratic programming problems (QPs), which can easily
be solved using efficient off-the-shelf solvers.

Although control barrier functions introduced in [6] are
a popular choice for enforcing safety constraints, they are
heavily model-based and hence lack robustness properties.
Moreover, the traditional CBFs are not designed for incor-
porating large numbers of constraints and have feasibility
and continuity issues which prevent their usage in practical
applications. Recent work on energy based CBFs [8], [9], and
even the more recent work on model-free CBFs [10] aimed
to resolve the issue of handling model uncertainty, but not
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Fig. 1: 6 DoF robot manipulator (Mujoco based model),
where we incorporate a large number of safety constraints
(>100). We propose a QP based model-free control frame-
work with guaranteed feasibility and continuity properties.

particularly on the issue of feasibility and continuity when a
large number of constraints are considered [11], [12].

In this paper, we aim to resolve this issue of incorporating
large inequality constraints and yet ensure feasibility, conti-
nuity and safety of the resulting QP formulations. In partic-
ular, we use a specific form of constraints obtained from the
energy based CBFs [8], [9]. We provide QP formulations for
both types of CBFs: reciprocal and zeroing control barrier
functions, and in both joint and task spaces. In [9], zeroing
type was shown for only position based constraints; here we
extend it for velocity based constraints, and also show how it
can be used in conjunction with other constraints. We show
that, with torque limits permitting, the formulation always
yields a feasible and a Lipschitz continuous control law. We
implement the proposed control in a 6 DOF arm platform and
demonstrate safety with > 100 constraints. We also combine
tracking using model-free Control Lyapunov Function (CLF)
based constraints. Simulation results show that the proposed
formulation is very effective for many practical scenarios.

The paper is organized as follows. The notations, robot
dynamics and control of robot in task space is described in
Section II. In Section III, the zeroing and reciprocal control
barrier functions (CBFs) are defined along with their safety



properties. Further, the energy based CBFs for position and
velocity based constraints are discussed. In Section IV, the
barrier functions for task space are introduced. Section V
provides the unification of safety and stability by incorporat-
ing Control Lyapunov Functions (CLFs) with CBFs. We also
provide our main results here. Section VI provides the sim-
ulation results for two types of QP formulations on a 6 DOF
manipulator with position and velocity constraints enforced
in task space and joint space. The manipulator stabilizes to
a desired position and orientation while satisfying the safety
constraints. Finally, Section VII concludes the paper.

II. ROBOT DYNAMICS AND TASK SPACE CONTROL

In this section, we will first describe the robot dynamics
and the task space control of the robot. In particular, we will
describe Euler-Lagrangian formulation of the robot, and the
required control law to make the end effector reach a desired
configuration in the Cartesian space.

A. Notation.

A continuous function α : [0, a)→ [0,∞) for some a > 0
is said to belong to class K if it is strictly increasing and
α(0) = 0. Here, a is allowed to be +∞. A continuous
function α : [0,∞) → [0,∞) is said to belong to class
K∞ if it is strictly increasing, α(0) = 0, and α(r)→∞ as
r → ∞. A continuous function α : (−b, c) → (−∞,∞) is
said to belong to extended class K for some b > 0, c > 0
if it is strictly increasing and α(0) = 0 (see [11, Definition
1]). Here again, b, c are allowed to be +∞. If we want to
indicate the domains, we will denote class K and extended
class K functions as K[0,a), K(−b,c) respectively. Given the
state x, we denote its Euclidean norm as |x|.

B. Robot Dynamics

A fully actuated robotic manipulator with configuration
manifold Q can be modeled by Euler-Lagrangian equations
as follows:

D(q)q̈ + C(q, q̇)q̇ +G(q) = u, (1)

where q ∈ Q denotes the configuration of the robot, q̇ ∈ TqQ
represents the rate of change of the configuration q, D(q) ∈
Rn×n is the positive definite inertia matrix, C(q, q̇) ∈ Rn×n
is the Coriolis-centrifugal matrix, G(q) ∈ Rn is the gravity
vector, and u ∈ U = Rn is the control input provided to the
actuators. The above dynamics in (1) can also be written in
control-affine state-space form as

ẋ = f(x) + g(x)u, (2)

where f, g are the appropriate vector functions, and x :=
(q, q̇) ∈ TQ, denotes the vector constituting the state of the
robotic manipulator, where TQ is the tangent bundle of Q. In
this paper, we employ a 6 DOF robotic manipulator (Kinova
Jaco 2, see Fig. 1) for implementation of the proposed
methodology.

The following properties hold true for a class of commonly
studied mechanical systems including but not limited to serial
manipulators (see [13]).

Property 1. D is symmetric positive definite, and Ḋ − 2C
is skew-symmetric ∀q ( [14], Lemma 4.2). In addition, there
exist positive constants cl, cu, such that for any (q, q̇) ∈ TQ,
• cl ≤ ‖D(q)‖ ≤ cu
• cl ≤ ‖D−1(q)‖ ≤ cu
• ‖Ḋ(q)‖ ≤ cu|q̇|
• ‖C(q, q̇)‖ ≤ cu|q̇|
• |G(q)| ≤ cu.

We have chosen the same constants cu, cl for ease of
notations. Proof of Property 1 can be found in [13] - [15].

C. Task space control

The majority of tasks such as pick and place operation,
hold and drop etc. involving robotic manipulators are defined
in terms of the desired end effector position and orientation.
In order to achieve the desired pose, the control design
for such tasks can be performed by either transforming the
trajectory in the task space to joint space and then designing
a controller in the joint space (also known as joint space
control) or it can be directly designed in the task space (also
referred to as task space control). For controlling the end-
effector pose, the dynamics of the manipulator should be
defined in the task space, thus we reformulate the dynamics
given in (1). We define the following:

e = Φ(q), ė = J(q)q̇. (3)

where e denotes the state vector that includes end-effector
position and orientation, and J is the Jacobian of the transfor-
mation Φ(q). We assume that J is invertible1. Accordingly,
we have the dynamics as

De(q)ë+ Ce(q, q̇)ė+Ge(q) = J−Tu, (4)

where De(q) = J(q)−TD(q)J(q)−1, Ce(q, q̇) =
J(q)−TC(q)J(q)−1+J(q)−TD(q) ddt (J(q)−1) and Ge(q) =
J(q)−TG(q). Property 1 for the task space dynamics can still
be ensured locally (for a bounded set N ⊂ Q):

Property 2. De is symmetric positive definite, and Ḋe −
2Ce is skew-symmetric. In addition, there exist cl, cu > 0
(possibly smaller, larger than previously determined cl, cu)
such that for any (q, q̇) ∈

⋃
q∈N TqQ,

1. cl ≤ ‖De(q)‖ ≤ cu
2. cl ≤ ‖D−1e (q)‖ ≤ cu
3. ‖Ḋe(q)‖ ≤ cu|ė|
4. ‖Ce(q, q̇)‖ ≤ cu|ė|
5. |Ge(q)| ≤ cu.

This will be useful for allowing larger velocity variations.
Proof of Property 2 is provided in [16, Appendix B]. The
interested reader may also see [14, Chapter 4, Section 5.4] for
more details. One of the advantages of task space control is
that the inverse kinematics need not be calculated explicitly.
The main goal of the task space control is to design a

1The end-effector space dimension is typically equal to the number of
joints. In case if there are more joints, then the vector e would include the
redundant joints, thereby ensuring non-singularity of J



feedback controller that allows execution of an end-effector
motion e(t) ∈ Rn that tracks the desired end-effector motion
ed(t) ∈ Rn as closely as possible.

If the forces and moments acting on the end-effector
are denoted by F , then using the Jacobian transpose the
relation between the forces/torques acting on the joints of
the manipulator (u) and the forces/torques acting on the end
effector (F ) can be given by

uref = JTF. (5)

The corresponding PD control law can be given by

uref = JT (Kp(ed − e) +Kd(ėd − ė)), (6)

where Kp and Kd denote the proportional and derivative
gains for the PD controller. In [17], it was shown how to
incorporate PD control laws via control Lyapunov function
based Quadratic Programs (CLF-QPs). The resulting formu-
lation is not only model-free, but also allows us to include
additional constraints like safety in the real-time controller.
This will be described after describing model-free CBF-QPs.

III. SAFETY CRITICAL CONTROL

In this section, we will describe the generic formulation
used for ensuring safety. Further, we will describe kinematic
constraints associated with the Euler-Lagrangian formulation
of the robot that are used. Typical constraints used in robotic
systems are:

• Joint position based constraints:

hi,p,l(q, q̇) := qi − qmin ≥ 0,

hi,p,u(q, q̇) := qmax − qi ≥ 0. (7)

• Joint velocity based constraints:

hi,v,l(q, q̇) := q̇i − q̇min ≥ 0,

hi,v,u(q, q̇) := q̇max − q̇i ≥ 0. (8)

• End-effector position based constraints:

hi,e,l(q, q̇) := ei(q)− emin ≥ 0,

hi,e,u(q, q̇) := emax − ei(q) ≥ 0. (9)

• End-effector velocity based constraints:

hi,ė,l(q, q̇) := ėi(q, q̇)− ėmin ≥ 0,

hi,ė,u(q, q̇) := ėmax − ė(q, q̇) ≥ 0. (10)

here i corresponds to the constraint on the ith joint angle/end
effector pose and qmax, emax and qmin, emin denote the
maximum and minimum permissible joint angle/end effector
pose respectively. These constraints can be represented in the
form of sets, and the goal is to construct control laws that
ensure forward invariance of these sets.

A. Safety as forward invariance of a set

The concept of control barrier functions (CBF) is derived
from the concept of control Lyapunov function (CLF). CLFs
ensure that the trajectory reaches a desired point in a set P ,
whereas the CBFs ensure that the trajectory remains inside
a safe set. Consider the set C ⊂ TQ, defined as

C = {x ∈ TQ : h(x) ≥ 0}, (11)
∂C = {x ∈ TQ : h(x) = 0}, (12)

Int(C) = {x ∈ TQ : h(x) > 0}, (13)

where h : TQ→ R is a continuously differentiable function.
Note that h could be one of (7)-(10). It is assumed that Int(C)
is non-empty and C has no isolated points, i.e., Int(C) 6= ∅,
and Int(C) = C.

We are interested in an optimal control law, k : TQ→ Rn,
that can be specified that will ensure safety of C (or of
Int(C)), i.e., ensure that h(x(t)) > 0 ∀t ≥ 0, x(0) ∈ Int(C),
which is obtained via control barrier functions (CBFs).
Specifically, we will study two types: reciprocal control bar-
rier functions (RCBFs) and zeroing control barrier functions
(ZCBFs).

B. Control barrier functions

In this subsection we will formally describe two classes
of control barrier functions for robotic systems, and the
associated quadratic programming (QP) formulation that
ensures forward invariance of a safe set.

Definition 1. Given a set C ⊂ TQ defined by (11)-(13)
for a continuously differentiable function h : TQ → R, the
function B : Int(C) → R is called a reciprocal control
barrier function (RCBF) defined for the set C, if there exist
α1, α2, α3 ∈ K[0,a) such that for all x ∈ Int(C),

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
(14)

LgB(x) = 0 =⇒ LfB(x) < α3(h(x)). (15)

Here LfB, LgB are the Lie derivatives of B w.r.t. f, g.
This definition is obtained from [12] and it is assumed that
there are no restrictions on u. Similar to RCBF, we have
the following definition of a zeroing control barrier function
(ZCBF) [7].

Definition 2. Given a set C ⊂ Rn defined by (11)-(13) for
a continuously differentiable function h : TQ → R, the
function h is called a zeroing control barrier function
(ZCBF) defined for the set C, if there exist α ∈ K[0,a) such
that for all x ∈ Int(C),

Lgh(x) = 0 =⇒ Lfh(x) > −α(h(x)). (16)

Note that the original definitions of RCBF and ZCBF in
[7] do not use the strict inequality. Moreover, the ZCBF was
defined for a larger set D ⊃ C, and with extended class K
functions. In this paper, we are interested in safety of Int(C).
We are reformulating with the view of ensuring continuity



in the corresponding QP formulations. More details on the
relationship between the QPs and the continuity requirements
are provided in [12]. Given the RCBF and ZCBF, we know
by [18, 4.19] that the following QP:

u∗(x) = arg min
u

uTu (QP)

s.t. LfB(x) + LgB(x)u ≤ α3(h(x))

OR

Lfh(x) + Lgh(x)u ≥ −α(h(x)).

not only yields a Lipschitz continuous control law, but also
renders the set Int(C) forward invariant [7, Corollary 1].
The RCBF and the ZCBF each have their use cases in
practical applications and will not be discussed here due to
space limits (interested readers can refer to [7] for a detailed
comparison).

C. Energy based CBFs

Given the robotic system described by (1) along with the
associated properties, we know that the kinetic energy is

E(x) :=
1

2
q̇TD(q)q̇. (17)

If we take the derivative of E(x), we have

Ė(x) =
1

2
q̇T Ḋ(q, q̇)q̇ + q̇T (−C(q, q̇)q̇ −G(q) + u)

= q̇T (u−G(q)), (18)

where we have used Property 1. The above equation shows
that the derivative of kinetic energy does not include D,C,
which are dependent on the model. Further simplifications
can be made on G(q) by using the inequalities in Property
1. The main focus in this paper is to use this model-free
formulation for construction of robust safety-critical control
laws. To this end, we will now define a new class of RCBFs.

We assume that h is one of (7), (8), i.e., h is either
hi,p,�, i = 1, 2, . . . ,� ∈ {u, l} or hi,v,�, i = 1, 2, . . . ,� ∈
{u, l}. A more generic form with the constraints on task
space (9) and (10) will be discussed in the next section.

We will study the position based constraint (7) first. Let
Bp : Int(C)→ R be defined as

Bp(x) :=
1

h(x)
+H(x).

where H denotes a differentiable function expressed in terms
of the kinetic energy function E(x) (17):

H(x) :=
E(x)

1 + E(x)
. (19)

By using (18), the derivative of Bp can be written as

Ḃp(x, u) = −Lfh(x)

h(x)2
+
q̇T (u−G(q))

(1 + E(x))2
, (20)

and since Ḃp(x, u) satisfies (15), Bp is a valid RCBF. The
resulting min-norm control law (QP) renders the set Int(C)
safe (i.e., forward invariant).

Similar to the energy based RCBF (Bp), the energy based
ZCBF is given by zp : TQ→ R,

zp(x) := −E(x) + αeh(x), (21)

where αe > 0 is a constant. It can be verified that zp(x) ≥
0 =⇒ h(x) ≥ E(x)/αe ≥ 0, which implies that the set
defined by zp ≥ 0 is non-empty and is in C:

Cz := {x ∈ TQ : zp(x) ≥ 0} ⊂ C. (22)

It can be verified that zp(x) > 0 =⇒ x ∈ Int(Cz), and
safety of Cz (or Int(Cz)) implies zp(x(t)) > 0 for all t ≥ 0.
More details about this class of ZCBFs are given in [9]. The
derivative of (21) can be written as

żp(x, u) = −q̇Tu+GT q̇ + αeḣ(x). (23)

As mentioned earlier, both (20) and (23) do not require
the knowledge of the Coriolis-centrifugal matrix C. Further
modifications can be made using Properties 1 and 2 to obtain
a model-free inequality. This is explained next.

Since our ultimate goal is to realize a model-free QP, we
can replace E(x), G(q) by their extreme values:

cl|q̇|2 ≤ E(x) ≤ cu|q̇|2, −cu|q̇| ≤ q̇TG(q) ≤ cu|q̇|, (24)

which are obtained by using Property 1. Based on the sign of
q̇Tu, appropriate bounds (lower or upper) must be substituted
in (20). This results in two constraints similar to (QP) instead
of one. We have the following two inequalities:

ψ00(x) + ψ01(x)u ≤ 0, (25)
ψ10(x) + ψ11(x)u ≤ 0, (26)

where

ψ00(x)=ψ10(x) = −Lfh(x)

h(x)2
+

|q̇|cu
(1 + cl|q̇|2)2

− α3(h(x)),

ψ01(x)=
1

(1 + cl|q̇|2)2
q̇T ,ψ11(x)=

1

(1 + cu|q̇|2)2
q̇T . (27)

Accordingly, we define the point (state) to set mapping with
these two constraints as

Kprcbf(x) :=
{
u ∈ Rn : (25), (26) are true.

}
. (28)

Similarly, we obtain the following inequality for ZCBF:

φ1(x) + φ2(x)u ≥ 0, (29)

where

φ1(x) = αeḣ(x)− cu|q̇|+ α(−cu|q̇|2 + αeh(x))

φ2(x) = −q̇T , (30)

and the point to set mapping is obtained as

Kpzcbf(x) :=
{
u ∈ Rn : (29) is true.

}
. (31)



D. Energy based CBFs for velocity constraints

For the velocity constraints, we assume that h is of the
type (8). Extension of these constraints for task space will
be described in the next section. Depending upon the joint
of interest, we can separate the dynamics (1) into two parts.
If the goal is to constrain the velocity of the first joint, q̇1,
then we have the following separation:

D11q̈1 +D12q̈b + C1q̇ +G1 = u1, (32)
D21q̈1 +D22q̈b + C2q̇ +G2 = ub, (33)

where qb is the vector of remaining joint angles, and ub
is the vector of remaining control inputs. The matrices
with subscripts, D�, C�, G�, are the block matrices of
appropriate dimensions, which are self-explanatory. We can
eliminate q̈b from (32) to yield

Ds(q)q̈1 + Cs(q, q̇)q̇ +Gs(q) = u1 −D12(q)D−122 (q)ub,

where Ds(q) is the Schur complement form of the inertia
matrix D ( [16] Proposition 1):

Ds = D11 −D12D
−1
22 D21, (34)

which is symmetric and positive definite. Cs, Gs can simi-
larly derived. Furthermore, by appropriate choice of cl, cu,
Ds, Cs, Gs satisfy the same inequalities shown in Property
1 (see [16, Propositions 1 and 2] for a detailed description).
With this setting, we choose the following RCBF:

Bv(x) =
1

hv(x)
, hv(x) =

1

2
h(x)Ds(q)h(x).

Note that Bv is still a valid RCBF, since we can find
α1, α2 ∈ K such that α2(h(x)) ≤ hv(x) ≤ α1(h(x))
for x ∈ Int(C). Let ψ(x) := −D̂12(q)D̂−122 (q); where the
symbol ˆ indicates the model estimate for D12, D22.
Similarly, choose a tunable constant 0 < γ < 1. Then we
can use the following constraints in the (QP):

1

γ
ψ20(x) + ψ21(x)[1 γψ(x)]u ≤ 0, (35)

1

γ
ψ30(x) + ψ31(x)[1 γψ(x)]u ≤ 0, (36)

where

ψ20(x) = ψ30(x) =
cu
cl2h3

(
1

2
h|q̇|+ |q̇|2 + 1)− α3(h(x)),

ψ21(x) =
1

cl2h3
, ψ31(x) =

1

cu2h3
, (37)

Similarly for ZCBF we get the following inequality:

1

γ
φ3(x) + φ4(x)[1 γψ(x)]u ≤ 0, (38)

where

φ3(x) = cuh(
1

2
h|q̇|+ |q̇|2 + 1)− α(h(x)),

φ4(x) = h. (39)

Having obtained the model-free inequalities, we have the
following results which were established in [8], [9].

Lemma 1. Given the position based constraint function h
and the corresponding set C defined by (11) - (13) then the
following QP:

u∗(x) = arg min
u

uTu (40)

s.t. (25), (26) OR (29)

guarantees safety (i.e., forward invariance of Int(C) for
RCBF, and forward invariance of Int(Cz) for ZCBF).

Lemma 2. Given the velocity based constraint function h
and the corresponding set C defined by (11) - (13) then, for
a small enough γ > 0, the following QP:

u∗(x) = arg min
u

uTu (41)

s.t. (35), (36) OR (38)

guarantees safety i.e., forward invariance of Int(C).

Proofs of Lemmas 1 and 2 can be found in [8], [9]. With
these results, we now extend our work for task space safety-
critical control.

IV. CONTROL BARRIER FUNCTIONS FOR TASK SPACE

The barrier functions defined for joint space can be
reformulated for task space with the help of the Jacobian
J(q) which maps the control u to the task space dynamics.
Since we know from Property 2 that cl ≤ ‖De(q)‖ ≤ cu and
ce|q̇| ≤ |ė|, for some constant ce. Thus we have:

1

1 + ėTDeė
≤ 1

1 + cl|ė|2
≤ 1

1 + clc2e|q̇|2
. (42)

We can replace c′l = min{cl, c2e} to yield final inequality.
The upper bound c′u can be similarly obtained. Accordingly,
(25) and (26) can be reformulated for the task-space, where
ψ00, ψ01, ψ10, ψ11 are replaced with ψ′00, ψ

′
01, ψ

′
10, ψ

′
11 re-

spectively:

ψ′00(x) + ψ′01(x)u ≤ 0, (43)
ψ′10(x) + ψ′11(x)u ≤ 0, (44)

with

ψ′00(e) = ψ′10(e) = −Lfh(e)

h(e)2
+

|q̇|cu
(1 + c′l|q̇|2)2

− α3(h(e)),

ψ′01(e) =
1

(1 + c′l|q̇|2)2
ėTJ−T =

1

(1 + c′l|q̇|2)2
q̇T ,

ψ′11(e) =
1

(1 + c′u|q̇|2)2
ėTJ−T =

1

(1 + c′u|q̇|2)2
q̇T . (45)

With this substitution, it can be verified that the resulting
ψ′01, ψ

′
11 differ from ψ01, ψ11 only by a scaling factor. This

is very important for including multiple constraints.
For ZCBF based constraint for task space, we can obtain

the following in a similar manner:

φ′1(e) + φ′2(e)u ≥ 0, (46)



which is similar to (29), and the new terms φ′1, φ
′
2 are

obtained accordingly. Further, for the end effector velocity
constraints, we have

1

γ
ψ′20(e) + ψ′21(e)[1 γψ′(e)]J−>(q)u ≤ 0, (47)

1

γ
ψ′30(e) + ψ′31(e)[1 γψ′(e)]J−>(q)u ≤ 0, (48)

where the ψ′s above are obtained are accordingly. Similarly
for ZCBF, (38) can be reformulated as

1

γ
φ′3(e) + φ′4(e)[1 γψ′(e)]J−>(q)u ≤ 0, (49)

where φ′3 and φ′4 are obtained accordingly.
With the new constraints, (43), (44), (46) and the rest,

reformulated versions of Lemmas 1, 2 can be established.
Due to space constraints, stating this result will be omitted.
We will now incorporate tracking along with the CBF based
constraints and present our main results.

V. UNIFICATION OF TRACKING AND SAFETY

A. Control Lyapunov Function for Task space

In order to stabilize the manipulator to a desired position
and orientation in the task space, we employ QP based PD
control law which is independent of any model parameters as
given in [19]. Asymptotic convergence cannot be guaranteed,
but the error can be reduced to an arbitrarily small bound
subject to suitable tuning of the gains. The cost function is
chosen such that it minimizes the difference between control
torque u and a reference torque uref given by:

min
u,δ

(u− uref (t, x))>(u− uref (t, x)) + δ2.

s.t. (β(e− ed)> + (ė− ėd)>)(Kp(e− ed) +Kd(ė− ėd)
+ (β(e− ed)> + (ė− ėd)>)J−>u ≤ δ (50)

where β = k0
1+|e−ed| , Kp,Kd are the gain matrices, ed is

the desired position in task space. Here the constant k0 is

chosen such that it satisfies k0 ≤
√
||Kp||||De||
||De|| . We have the

following theorems.

Theorem 1. Given the set of position and velocity con-
straints for a manipulator (7)-(10), and the corresponding
reciprocal control barrier functions, the QP of the form

min
u,δ

(u− uref (t, x))>(u− uref (t, x)) + δ2 (51)

s.t. (50)
(25), (26),with h = hi,p,�, i ∈ {1, 2, . . . },� ∈ {u, l}
(35), (36),with h = hi,v,�, i ∈ {1, 2, . . . },� ∈ {u, l}
(43), (44),with h = hi,e,�, i ∈ {1, 2, . . . },� ∈ {u, l}
(47), (48),with h = hi,ė,�, i ∈ {1, 2, . . . },� ∈ {u, l}

guarantees safety i.e., forward invariance of intersection of
all sets (Int(C)’s) defined for each h.

Proof. Due to space constraints, a rough sketch of the proof
will be provided. We will be mainly using the results from

[8, Theorems 1,2] and [7, Theorems 1,2,3]. We will first
establish the feasibility of the QP shown above. By virtue of
their property, each of the constraints can be represented as

ak + bk

[
δ
u

]
≤ 0, (52)

where ak, bk are indexed by k based on the constraint. For
the CLF and the velocity constraints, bk is a non-zero row
vector for all x ∈ Int(C). For all other constraints, while ak
changes based on the constraint function h, bk is always of
the form s ∗ q̇T , where s > 0 is some scaling factor (see
(27) and (45) for comparison). Hence, by re-scaling all of
these constraints, i.e., by dividing each position based safety
constraint by the scaling factor, we will have identical b′s.
Therefore, we can replace all of these constraints by a single
constraint

max {a1, a2, . . . }+ q̇Tu ≤ 0, (53)

and since the max function is continuous, the original QP
can be replaced with a QP having a single position based
constraint along with others. Finally, by using the results
from [12, Theorem 1], we can guarantee feasibility and
continuity, thereby guaranteeing safety.

Theorem 2. Given the set of position and velocity con-
straints for a manipulator (7)-(10), and the corresponding
zeroing control barrier functions, the QP of the form

min
u,δ

(u− uref (t, x))>(u− uref (t, x)) + δ2 (54)

s.t. (50)
(29),with h = hi,p,�, i ∈ {1, 2, . . . },� ∈ {u, l}
(38),with h = hi,v,�, i ∈ {1, 2, . . . },� ∈ {u, l}
(46),with h = hi,e,�, i ∈ {1, 2, . . . },� ∈ {u, l}
(49),with h = hi,ė,�, i ∈ {1, 2, . . . },� ∈ {u, l}

guarantees safety i.e., forward invariance of intersection of
all sets (Int(C)’s or Int(Cz)’s) defined for each h.

Proof of Theorem 2 will be similar to Theorem 1 and
hence will be omitted.

VI. RESULTS

The Kinova Jaco2 6 DOF robotic arm is used for per-
forming simulations inside the MuJoCo simulation envi-
ronment. It consists of six hinge joints which constitute
the configuration q = {q1, q2, q3, q4, q5, q6} of the arm. It
also consists of an end effector with 3 fingers each having
two hinge joints for performing pick and place operations
(as shown in Fig. 1). Table I displays the parameters used
for performing simulation such that the end effector of the
robot manipulator safely reaches the desired configuration
{x, y, z, roll, pitch, yaw} = {−0.4, 0.3, 0.6, 0.1, 0.1, 0.1}.
Note that we have successful tracking for multiple desired
configurations and the plots shown in the paper are for a
specific desired value. The simulations are performed for
reciprocal CBFs (51), and it can be seen from Fig. 2 and Fig.
3 that the manipulator reaches the desired configuration in



(a) (b) (c)

Fig. 2: Response curves for (a) joint angles (b) joint velocities and (c) end-effector linear and angular velocities vs time.

TABLE I: Simulation Parameters

Parameters Value
RCBF ZCBF

Kp,Kd(uref ) 20, 2 8000, 2
αe, α - 5, 0.2
α3 1000 -
Kp,Kd (CLF constraints) 400, 100 40, 5
qmax, qmin 2π/3, −2π/3
qd,max, qd,min 21, −21
xmax, xmin 1.2, −1.2
xd,max, xd,min 8, −8
cl, cu 2 , 20
τmax, τmin 100, −100
k0 0.01
γ 0.007

15 seconds while satisfying the end effector safety limits i.e.
(−1.2, 1.2). Fig. 2 (a) depicts the variation of joint angle with
time and it can be seen that the all the six joint angles remain
within the safety limits (−2π/3, 2π/3) rad. Fig. 2 (b) and
2 (c) show the variation of joint and end-effector linear and
angular velocities with time and it can be seen that that joint
velocities and end-effector velocities remain within the safety
limits i.e. (−21, 21) and (−8, 8) respectively. Similarly the
control torque for each joint remains continuous and within
the limits (−100, 100) Nm as shown in Fig. 4.

The simulation results for the case of zeroing CBFs (54)
are shown in Fig. 5, 6, 7, 8 and 9 depicting the variation
of end-effector position and orientation, joint angles, joint
velocities, end-effector velocities and control torque respec-
tively with time. The same set of safety constraints were
used for ZCBF as used for RCBF as shown in Table I. From
Fig. 5, it can be observed that the manipulator reaches the
desired configuration within 20 seconds while satisfying the
different constraints. Similarly, the torques shown in Fig. 9
are continuous and remain with the limits (−100, 100) Nm.

VII. CONCLUSION

In this paper, we demonstrate multi-objective QPs for
robotic manipulators via energy based CBFs. Practical ma-
nipulators industries and other locations are frequently op-
erated in constrained environments. Hence, safety critical
control becomes very important for tasks that involve active

Fig. 3: Response curves for desired and actual end-effector
position and orientation vs time.

Fig. 4: Control torque components vs time.

interactions between the robot and humans. The energy based
CBFs provide an effective tool for addressing the problem
of safety when the number of constraints are large. We
provide feasibility, continuity and safety guarantees with the
proposed formulation. Future work, will involve extending
this work for a broader class of robotic systems.



Fig. 5: Response curves for desired and actual end-effector
position and orientation vs time.

Fig. 6: Response curves for joint angles vs time.

Fig. 7: Response curves for joint velocities vs time.
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